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 Definition of faces and flow directions

* Flow direction dependence of Henry-Fauske critical
flow model implementation
— ldentification
— Resolution
— Verification

* Changes to Flow Quality calculation
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Definition of Faces and Directions

e Each volume in RELAP5-3D has 6 faces

— Primary flow is in the x-direction
— Gravity can be assigned to any direction

— Positive flow is defined as:

* Face 1 = Face 2 in x-direction
* Face 3 = Face 4 in y-direction
* Face 5 = Face 6 in z-direction
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Definition of Faces and Directions

* Positive flow direction for junctions is user defined
as:

— From volume = To volume

* Pipe internal junctions
— From volume = lower numbered volume
— To volume = higher numbered volume

e User defined junctions (single junctions, valves, etc.)

— User inputs From and To volumes
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ldentification of the Problem

* User problem reported

— Choked flow rate given by Henry-Fauske under-predicted
by up to 30%

— Incorrect flow rates obtained when flow through the
volume upstream of the break was negative (negative

velocities)
e Further investigation showed incorrect choked flow

rates for:
— Negative flow through upstream volume
— Negative flow through the choked junction
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Steady-State Choked Flow

Henry-Fauske

pipe orientation - break orientation
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Steady-State Choked Flow
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Choked Flow Rate
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pipe orientation - break orientation
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Transient Choked Flow

Henry-Fauske
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Cause of flow direction dependence

* Assumption inherent in the implementation that the
model would only be applied with flow in the
positive flow direction

e Results in incorrectly calculated stagnation pressure
at the choked junction

* Appendix K choked flow model is similarly impacted
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Henry-Fauske Choked Flow Model

 Why was this not previously observed?

— Models developed to test choked flow are generally one
dimensional

* Marviken
e Edwards-O’brien

— Models are purposefully developed with flow in the
positive direction

* Where is it important?
— Double ended breaks
— SG tube rupture
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Changes to RELAP5-3D

* Five separate issues have been addressed
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— Three are related to the calculation of stagnation pressure
at the break

1. Momentum head term in the pressure loss formulation contained
incorrectly applied sign adjusted velocities

PIGSS = 0.5 * mv,sign(af,jpﬁj |Vf|Vf + Ag,jPg,j |VH|V9)
Wy sign = SIGN(1.0,v¢ ;)

— Corrected by taking the absolute value of the net momentum
head

Pioss = Uﬁl“ﬁj:"ﬁjl"fl"f T Qg,jPg,j |V9|Vy|

F.X. Buschman IRUG October 2012 Slide 12



Changes to RELAP5-3D

2. Pressure loss due to wall friction used an incomplete sign
correction

# LABORATORY

— Corrected by adding an additional sign correction based on
location of the choked junction compared to the orientation
of the velocity

Plﬂss — Piﬂss o mVﬂI,si‘gn&x(FwaH,fo + Fwa!!,gvg)

3. Pressure loss due to gravity contained an incorrectly applied sign
correction

— Corrected the sign term to remove dependence on junction
velocity

Pioss = Pioss — Wyol,signYe ﬂh(af,jpf.j + ag,jpg,j)
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Changes to RELAP5-3D

— Two are related to change of critical flow rate with time

4. Derivative of velocity with respect to pressure (used to calculate
implicit velocity) contained an unnecessary sign term

— Corrected by removing the sign term

5. Selection of the weighting factor in the time-smoothing of
velocity was done using velocity

— Corrected by using absolute value of velocity
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Verification of Changes

* Four verification problem sets developed
— One steady-state
— Three transient
— Flow in all directions

* Through junction that is experiencing critical flow
* In upstream volume

— Choked flow at all Faces
— Both semi and nearly-implicit
— Test all choking options

* Henry-Fauske
e Default (Ransom-Trapp)
* No choking
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Choked Flow Verification Lﬁs

e Depressurization problem
— Transient blowdown through a pipe
— Various pipe and valve orientations
— Flow always left-to-right (as shown)
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Depressurization Results

pipe orientation - break orientation
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Choked Flow Verification
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e Steady-state problem
— Steady-state choked flow through a single volume

— Same volume and junction orientations as depressure
problem (only first orientation shown)
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Steady-State Results

pipe orientation - break orientation
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Choked Flow Verification
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e Side-top-bottom problem
— Transient blowdown through a pipe
— Same as depressure problem except:

* Choked junction located at face 3,4, 5, or 6
* Choked junction oriented facing into and out of the pipe
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Side-Top-Bottom Results
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Side-Top-Bottom Results I
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Choked Flow Verification

* Flow-past-break

— Transient blowdown €
— Flow through a pipe )i ez

7
N/
i

— Various pipe and valve orientations

— Break located in the middle of the pipe 2 4

— Reduced break area compared to pipe & CICOE 3CIC o =2 4
area

— Break is located on the downstream 2 4

face of the third pipe volume } PR s ﬁ
* Flow out of break is in the same

direction as the flow in the pipe 2 4’

49 f i > 4»
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Flow-Past-Break Results

pipe orientation - break orientation
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Choked Flow Verification

* Flow-past-revbreak
— Transient blowdown through a pipe
— Various pipe and valve orientations (only one is shown)
— Break located in the middle of the pipe
— Reduced break area compared to pipe area

— Break is located on the upstream face of the fourth pipe
volume

* Flow out of break is in the opposite direction as the flow in the

pipe } v
h EEEEE 4
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Flow-Past-RevBreak Results

pipe orientation - break orientation

Choked Flow Rate
[98)
[

Change Pipe, Forward Break

LABORATORY

Forward Pipe, Change Break

— Normal - Normal

— Reverse - Normal

— Normal - Reverse

— Reverse - Reverse

0 10

F.X. Buschman

20
Time (s)

30

40

0.1

0.05

-0.05

L : -0.1
10 20 30 40 10 20 30 40
Time (s) Time (s)
Change Pipe, Reverse Break Reverse Pipe, Change Break
T I T I T I T 0.1 T I T I T I T
-1 0.05 —
— 0 —
-1 -0.05 —
1 I 1 I 1 I 1 _0.1 1 I 1 I 1 I 1
10 20 30 40 10 20 30 40
Time (s) Time (s)
Slide 27

IRUG October 2012



Flowing Quality

* Ratio of gas field flow rate to total flow rate

__ M

Xr1 =
How =M, + M,

e Used to calculate the equilibrium quality
_ [xﬂﬂw'ﬁ”g + (1 — xflaw)ﬁf] - ’ﬁ'f,sat
B ’ﬁ'g,sat _ ’ﬁ"f,sat
* Fluid enthalpies are “exit” conditions
— Change in fluid energy calculated over the length of
volume

— An attempt is made to determine flow direction so that
matching “exit” flows are used

Xe
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Flowing Quality

e |dentification of “Exit” Faces of a volume
— Original Code

 |dentify sign of largest gas mass flux

— If positive: Exit Faces are 2, 4, and 6

— If negative: Exit Faces are 1, 3, and 5
* Does not take into account actual flow conditions in each direction
* Produces asymmetric results for symmetric problem

— Identified during investigation of Henry-Fauske error

— Break attached to Face 3 provided different results than break
attached to Face 4 with choking turned off
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Flowing Quality

* |dentification of “Exit” Faces of a volume
— Modified RELAP5-3D

* Examine each Face independently
* If gas is flowing out of Face it is an Exit Face

— Only the gas flow rate is examined to allow definition of an
Exit Face in counter-current flow situations

* Provides a more realistic physical representation of flow conditions
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Calculating Flowing Quality

* Once Exit Faces have been identified
— Calculated average exit mass flow rates
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* Gas

* Liquid

] 1
Nexit 2

[
b =

Xrr =
How =M, + M,
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Calculating Flowing Quality Ss

e If sum of gas and liquid flow rates is zero
— Original
* Use static quality
— Modified

* Use volume velocities
1
2

2 2 2
My = agpy [(Ug,x‘qx) + (Ugydy) + (UgzAz) ]

1
E — Py l(UE,xAx)z + (UL}*‘AJ*‘)E + (ULZAZ)E]E

* If sum is still zero use static quality

__ M

Xr1 =
How =M, + M,
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Conclusions

* Modified Henry-Fauske critical flow model
implementation
— Removed flow direction dependence

 Developed comprehensive set of quantitative
verification problems

 Developed and implemented a symmetric definition
of Exit Face for use in the calculation of Flowing

Quality
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